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(ii) The hydrogen-bonding system 
The molecules possess a possible donor in the hy- 

droxyl group O(4)-H(O4) and possible acceptors in 
0(5) and the two anhydro oxygen atoms 0(23) and 
O(16). The hydrogen-bonding scheme and its distances 
and angles are shown in Table 4 and Figs. 4 and 5. 
O(16) is not involved in hydrogen bonds at all, the 
closest intermolecular O(4)-O(16) distance being 3.85 A. 

The two independent molecules are not hydrogen- 
bonded to each other, but form two entirely separate 
bonding systems. In all molecules 1, atoms 0(23) are 
the acceptors for hydrogen bonds of 2.87 A length, by 
which the molecules are connected to infinite chains 
around the screw axis parallel to a. In all molecules 2, 
atoms 0(5) play the roll of acceptors for hydrogen 
bonds of 2.97 /~ length, by which the molecules are 
connected to infinite chains around the screw axes 
parallel to b. The next shortest 0 ( 4 ) - 0  distances are 
3.27 and 3.32/~. Even if they are considered as very 
weak hydrogen bonds, they do not form bonds between 
molecules 1 and molecules 2. Besides, there is no evi- 
dence for intramolecular hydrogen bonding. 

The existence of 40 intermolecular distances smaller 
than 3.0/~ (not including those which are involved in 
hydrogen bonding) suggests strong van der Waals in- 
teractions between the molecules. The minimum values 
of 2.40 and 2.54/~ for H - H  and O-H distances, re- 
spectively, are close to the sum of the van der Waals 
radii (to = 1.4, rn = 1 "2 fk). 
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The Effect of Molecular Vibrations on Apparent Bond Lengths. II. Water Molecule 

BY M.W. THOMAS 

Mathematical Institute, Oxford University, OX1 3LB, England 

(Received 2 March 1971) 

The apparent contraction of the O-H bond in H20 due to the nuclear vibrational motion has been 
studied using a convolution approximation with both Slater- and Gaussian-type wave functions. The 
bond length here is taken as the distance between the maxima in the charge density such as would 
be inferred from X-ray measurements. The predicted degree of contraction appears to be quite sensitive 
to the quality and type of wave function used. The Gaussian function did not adequately represent the 
charge density near the hydrogen nucleus. However, the best Slater-type wave function gave a bond 
contraction of 0"13 %. Difference densities were also investigated and an estimate was made of the 
contribution to the bond shortening from the bending motion alone. 

Introduction 

It is well known (Dawson, 1965) that bond lengths to 
terminal hydrogen atoms as determined by X-rays are 
generally smaller than those determined by spectro- 
scopic or neutron- and electron-diffraction methods. In 

a previous paper (Coulson & Thomas, 1971), which 
henceforth will be referred to as I, we have shown that 
some of this apparent shortening can be accounted for 
by considering the effect of the nuclear vibrational 
motion on the electronic charge density associated with 
the equilibrium molecular geometry. In general, the 
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vibrational motion will smooth out the 'cusps' in the 
charge density at the nuclei. However, if the charge 
density near the nucleus is sufficiently aspherical and 
the vibrational motion is nearly harmonic then the 
peaks in the charge density will not correspond to the 
positions of the nuclei. 

Generally, the asphericity of the charge density near 
a nucleus will be due to the effects of bonding. More- 
over, as Coulson (1970) has pointed out, the aspheri- 
city will be greatest for atoms whose Is electrons are 
involved in bonding. Indeed, as shown in I, the effect 
is significant for certain diatomic molecules such as 
H2 and H +, where the bond shortenings are of the 
order of 0.1 a o. 

In the case of polyatomic molecules, one would again 
expect an apparent shift in the position of a terminal 
hydrogen atom due to the effect of the vibrational 
motion on the aspherical electron charge at the nucleus. 
However, unlike diatomics, the internal vibrational 
motion will include bending as well as stretching modes. 
As pointed out by Cruickshank (1956) and Dawson 
(1967), librational motions alone cause apparent bond 
shortenings, even for atoms with spherical charge di- 
stributions. But if there is charge asphericity in the di- 
rection of the bending motion, then bending motions 
will result in apparent bond angles different from the 
equilibrium values. It should be noted that this 'appa- 
rent bond angle' effect can also occur from anharmonic 
vibrational but not from anisotropic harmonic motions. 
However, to study these effects in detail, it is necessary 
to have good wave functions and a completely deter- 
mined vibrational potential function. For these reasons 
calculations were performed on the water molecule. 

As vibrational amplitudes are small compared with 
the equilibrium bond lengths and valence angles the 
convolution approximation discussed in I was used 
throughout. So we write 

~OH~(R)= I PHl(r)~Oeq(R-r)dr (1) 

where Pro(r) is the marginal probability density [see 
equation (10)] describing the vibrational motion of the 
hydrogen atom, H~. The static electron density ~oeq is 
taken at the equilibrium geometry for which wave 
functions near the Hartree-Fock (H-F) limit were 
used. The resulting dynamic density for the hydrogen 
atom is denoted by ~om(R). It should be pointed out 
that ~om(R ) is strictly valid only in a region near the HI 
equilibrium position as the integral only reflects the H1 
dependence. However, this is not too serious as the 
oxygen atom has a small vibrational amplitude due to 
its greater mass. In fact, in a more sophisticated treat- 
ment it would be necessary to know the static wave 
function as a continuous function of the molecular 
geometry. Such wave functions are not yet available 
for water.* Moreover, in I the results for H~- indicated 

* Kern (1970) has recently computed part of the potential 
energy surface for water. 

that the convolution approximation was a good ap- 
proximation for the exact Born-Oppenheimer den- 
sity. 

The purpose of this paper, then, is to examine the 
magnitude of the apparent bond shortening within the 
convolution approximation of equation (1) for various 
wave functions for an isolated water molecule. In order 
to estimate the contributions to the apparent bond shor- 
tening from the bending motion a calculation was also 
made using a 'bending only' vibrational distribution 
function, Prh(r), in equation (1). This function, Pro(r), 
was calculated on the assumption that the oxygen atom 
remained at rest and that the motion of the hydrogen 
atom H~ was due only to the vibrational bending mode. 

Vibrational motion 

Although the vibrational potential energy function 
V(rl r2 O) for an isolated water molecule can be easily 
determined within the harmonic approximation (Wil- 
son, Decius & Cross, 1955), certain difficulties of inter- 
pretation arise when anharmonic potential functions 
are used (Pliva, 1963; Kuchitsu & Morino, 1965; Ku- 
chitsu & Bartell, 1962). These difficulties arise partly 
because the potential energy should be expressed as a 
function of the internal coordinates and these depend 
non-linearly on the Cartesian coordinates, and also part- 
ly because the various constants in the potential function 
are now not all determined by the available experimen- 
tal data. Since the interest here lies in the extent to which 
the asphericity of a terminal hydrogen atom can lead to 
apparent bond length changes it suffices to use the har- 
monic approximation for the vibrational motion. In 
fact, since anharmonic oscillator wave functions are 
usually expanded as a perturbation in a basis of har- 
monic oscillator wave functions, the major contribu- 
tion to the nuclear distribution would come from the 
harmonic terms. 

To compute the harmonic probability distribution 
PHi(t) the well known F-G matrix formulation was used 
(Wilson, Decius & Cross, 1955). The force constants 
for the internal symmetry coordinates are listed in 
Table 1 together with the other molecular constants. 
The G matrix (kinetic energy matrix) was calculated 
using the atomic masses and the known equilibrium 
molecular geometry. The internal displacement coordi- 
nates p, (pi,P2,0) were taken to be linear combinations 
of the in plane Cartesian displacement coordinates r, 
(r:,iry~, i= 1,2,3) 

p = T . r  (2) 

where T is a 3 x 6 matrix. The internal coordinates p 
were then transformed to internal symmetry coordi- 
nates s by a unitary transformation 13 

s = O .p.  (3) 

The latent roots of the G" F matrix were then obtained, 
and hence the non-zero normal frequencies A, the nor- 
mal modes q and also a non-singular transformation k 
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back to the symmetry coordinates 

s = k . g .  (4) 

However, for the isolated water molecule this proce- 
dure also leads to three zero frequencies corresponding 
to the three linear relations defined by the Eckart (1935) 
conditions 

C . r =O (5) 

where C is a 3 x 6 non-singular matrix. These condi- 
tions arise from choosing a non-rotating frame of ref- 
erence fixed at the molecular centre of mass. Equations 
(5) and (2) can be used to eliminate three Cartesian dis- 
placement coordinates, leaving only the coordinates of 
the hydrogen atom (hi, h2) and some other Cartesian 
displacement coordinate e. Hence equation (2) can be 
written as 

p=B.t. (6) 

From equations (3), (4) and (6) one can construct a 
non-singular linear transformation from t = (hi, h2, cO to 
the normal coordinates q =  (ql, q2, q3) 

q = P . t  (7) 

where P = L-1. U. B is a non-singular 3 x 3 matrix. For 
the ground vibrational state the nuclear wave function is 

~'(q) = ¢,]l(ql)(0~l(q2)~0~l(q3) (8) 

where each ¢~(ql) is a ground-state harmonic oscillator 
function. Implicit in equation (8) is the assumption 
that the phases between the qi are random. Then by 
means of equations (6) and (7) the probability density 
for t can be written as 

0(t)= ~2(p't)  det (P) .  (9) 

Finally the nuclear probability density for the hydrogen 
atom H1 is 

PHx(h~'h2)= I 0(t)d~ 

= A  exp{-(DlhZ~+Dlzhth2+O2h2)}. (10) 

The constants A, D1, D12, and D2 are listed in Table 1. 
In a similar way equation (5) was used to obtain an 
expression for Po(ot,02), the nuclear probability density 
for the oxygen atom, with in-plane coordinates (01,02). 
However, owing to its larger mass the oxygen atom 
has a very much smaller vibrational amplitude; in fact, 
without serious error it can be considered to be at rest 
relative to the centre of mass. 

For the bending calculation the F22 constant of Table 
1 was used together with re to compute the displacement 
perpendicular to the O-H bond. The oxygen atom was 
taken to remain stationary and each hydrogen was as- 
sumed to contribute equally to the change in bond 
angle. With these assumptions Pn(hl h2) was computed 
and used in equation (1). 

In these calculations only the ground vibrational 
state was considered as it is the only state that is ap- 
preciably populated at room temperature. 

Table 1. Molecular constants 

Molecular geometry* 
re 1.8111 a o 
0 104031 , 

Harmonic force constantsl" 
Fxl 8"3528 mdyne, a~ -1 
Fl2 0"3217 
F22 0"7605 
F33 8"5545 

Harmonic frequencies 
21 3832.01 cm-X 
22 1648"86 
23 3942-55 

Calculated constants 
A 10.188523 a~ 2 
DI 31-834499 
D2 32.385669 
Dlz 5.082053 

* Benedict, Gaffer & Plyler (1956) 
t Kuchitsu & Partell (1962) 

Results for various electronic wave functions 

The static electron charge density Qeq used in equation 
(1) was computed from various wave functions calcul- 

Peq 

/ /  

/ j 
/ .. 

0"5 

.0"3 

.0"2 

-0"1 

O!O~i 0~10 0115 Or20 r (ao) 
Direction of oxygen nucleus 

Fig. 1. Static charge density 0eq along the O-H bond axis for 
various wave functions. STOB (Arrighini et al., 
1970). - . . . . . . . . .  STOA (Aung et al., 1968). • . . . . . . .  
GTO (Neumann & Moskowitz, 1968). 
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ated at fixed molecular geometries close to the spectros- 
copic geometry. Data for the three wave functions used 
are summarized in Table 2. Two used Slater-type orbi- 
tals (STO's) and one used contracted Gaussian orbi- 
tals (CGTO's). In all cases, only a single configuration 
( la  2, 2a 2, lb 2, 3a 2, lb 2) was utilized. However, since 
extensive basis sets, including d orbitals, were used all 
the wave functions are close to the H - F  limit. One 
would expect that computed one-electron properties 
such as the charge density should be reasonable well 
represented by such wave functions. The first wave 
function, labelled STOA, was computed at the spec- 
troscopic equilibrium geometry by Aung, Pitzer &Chan 
(1968). The second, labelled STOB (Arrighini, Gui- 
dotti & Salvetti, 1970), used two more basis functions 
on the oxygen and hence has a slightly better energy. 
The third, labelled GTO (Neumann & Moskowitz, 
1968), has the best energy. However, it uses orbitals 
which are built up from Gaussian-type functions. Un- 
fortunately, these are known to be poor at representing 
the wave function near the nucleus. This is vividly illus- 
trated in Fig. 3 where the local maxima of the static 
density 0e~ occur not at the hydrogen nuclei but are 

shifted into the bond. This suggests that even Gaussian- 
type wave functions close to the H - F  limit may not 
represent the charge density adequately near the hydro- 
gen nucleus. Also, one can see from Fig. 1 that the 
charge density calculated from STOA differs from that 
calculated from STOB even though their energy differ- 
ence is small. Both these points indicate that substantial 
differences in the charge density near the hydrogen 
atoms make little difference to the total energy. 

Table 2. Wave function data 

STOA STOB G T O  
Geome t ry  

r (a0) 1.811 1.8103 1 "80 
0 (°) 104.25 105 105 

Basis set size 
STO 25 27 - -  
C G T O  - -  - -  31 

Energy (a0) - 76.0047 - 76.0384 - 76.0440 

Electron density 
at hydrogen  nucleus 

(e.ao3) 0.437 0.459 0.404 

PHI 

f . t  
. f "  

f '  

/ 

/ j 
/ 

0"5 

0"4 

p 

/ 

0"3 

0"2 

0"1 

0"05 0"10 0"15 0"20 0"25 0"30 
r (ao) 

Direction of oxygen nucleus - - 

Fig. 2. D y n a m i c  charge density QI~I a long the O - H  bond  axis. 
D y n a m i c  density using S T O B . -  . . . . . . . . .  Dyna-  

mic density using STOA. • . . . . . . .  D y n a m i c  density using 
STOB and a 'bending only '  vibrat ional  distr ibution.  

The resulting dynamic electron density OHl(r) for the 
two STO wave functions is shown in Fig. 2. In both 
cases the origin is taken at the hydrogen nucleus and 
the electron density is plotted along the bond axis. 
For the STOA wave function there is really only a 
shoulder in the charge density QH(r). The STOB wave 
function, however, has a clearly defined local maximum 
which is shifted towards the oxygen atom to give an 
apparent bond shortening. These results are listed in 
Table 3. 

Table 3. Displacements of the maximum 
of the charge density 

(Origin is taken at the hydrogen  nucleus;  all shifts are  in the 
direction of  the oxygen nucleus;  units are a0) 

STOB STOA 
Total  vibrat ion Bending only 

Displacement  
(ao) 0.13 0.10 shoulder  

only 

Charge  density 
at m a x i m u m  

(e.a~ 3) 

Displacement  
of  difference 
density (a 0) 

0.362 0.391 0"360 

0"10 - -  0.12 

The STOB wave function was also convoluted with 
a 'bending only' vibrational function. The results are 
plotted in Fig. 2 and the shift is given in Table 3. 

It is also instructive to examine the contribution to 
QH(r) from the oxygen atomic density tro(r). Of course 
there is no unique choice of ao(r). It could be a free 
oxygen atom centred at the oxygen nucleus, or polar- 
ized or partially ionized with either a spherical or a 
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non-spherical charge density. However, for purposes of 
comparison it is convenient to take a spherically sym- 
metric 'free atom' charge density. This was computed 
from a ground state wave function near the H - F  limit 
(Bagus & Gilbert, 1967). The positions of the peaks for 
this difference density are listed in Table 3. In Fig. 3 
the difference density, Qn-tro has been plotted for the 
STOB wave function along the bond axis. For compar- 
ison the dynamic density Qn(r) and the static charge 
density 0,q(r) are also plotted. From the diagram one 
sees that an appreciable part of Qn comes from the 
charge density of the oxygen atom tro even near the 
hydrogen nuclei. 

Conclusions 

Perhaps the most' interesting result is the sensitivity 
of the charge density near the nucleus to the type of 
wave function. Although the two Slater-type wave func- 
tions give comparable electron densities the Gaussian- 
type wave function misplaces the peak in the charge 
density despite the fact that the wave function is close 
to the H - F  limit. Since only one simple polyatomic 
molecule has been considered it is difficult to say whe- 
ther Gaussian-type functions will generally misrepres- 
ent the charge density near the hydrogen nuclei. If 
this were so it would be difficult to compute bond shor- 
tenings for more complicated molecules as Gaussian 
wave functions are usually the only ones presently 
available. 

The effect of the vibrational motion is to smear out 
the peak in the charge density at the hydrogen nucleus 
In the case of the STOA wave function the peak at the 
hydrogen is reduced to a shoulder on the charge den- 
sity. However, for the STOB wave function a slight 
peak remains. The fact that the peak is broadened and 
almost disappears illustrates the difficulty in deciding 
what to take as the apparent bond length. Nevertheless, 
if one subtracts the charge density due to a spherical 
oxygen atom, peaks are obtained corresponding to 
bond shortenings of 0.1 a0 for STOB and 0.12 a0 for 
STOA. These are comparable with apparent bond length 
shortenings found in measurements of O-H bonds 
(Hamilton & La Placa, 1968). Also it is interesting to 
note in Fig. 3 the appreciable contribution to the 
charge density at the hydrogen nuclei from the oxygen 
atom. Moreover, the degree of contribution will depend 
on the shape and location of the oxygen density func- 
tion. In the discrete atom model, in which the total mole- 
cular density is taken to be the sum of the atomic den- 
sities, these considerations will affect the bond length 
measurements. 

The apparent bond shortening of 0.1 a0 for the bend- 
ing motion alone was less than the shortening of 0.13 
a 0 for the total vibrational motion of the isolated mol- 
ecule. One would expect the total vibrational motion 
to show a larger shift as the stretching modes alone 
should produce an apparent bond shortening as was 
shown in I. However, the small difference between the 
two shortenings is probably not the total stretching 

mode contribution as the 'bending only' calculation 
used just the F2z force constant of Table 1. In the actual 
molecule there is an Flz force constant which couples 
the bending motion with the symmetric stretching mode. 
In fact in a water molecule in ice there is a great deal of 
coupling between the intermolecular modes of neigh- 
bouring molecules as well as coupling with the lattice 
modes (Eisenberg & Kauzmann, 1970). Unfortunately, 
the potential function for such a system is not yet 
available. 

I would like to thank Shell Canada for their generous 
financial grant. Also I am deeply indebted to  Professor 
C. A. Coulson for suggesting this work and for his 
enthusiastic encouragement and helpful discussions. 
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Refmement of the Crystal Structure of Ferroeleetrie Add Lithium Selenite: 
Position of the Lithium Ion 
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The lithium ion in the ferroelectric acid lithium selenite (not obtained in the original X-ray work of 
Vedam, Okaya & Pepinsky) has been located at the pseudoinversion centre (½,¼,0) from considera- 
tions of symmetry, crystal chemistry and model building. This position is confirmed from three-dimen- 
sional Fourier and difference Fourier syntheses, the peak height at the lithium ion site being three times 
the standard deviation in the electron density. The lithium ion is coordinated octahedrally to six non- 
equivalent selenite-oxygen atoms. The hydrogen positions have been proposed on the basis of bond-length 
and bond-angle criteria. They indicate that the selenite groups containing Se(1) and Se(2) have respec- 
tively the structures H2SeO3 and HSeO;-. 

Introduction 

Pepinsky & Vedam (1959) first reported that acid 
lithium selenite, LiH3(SeO3)2, abbreviated hereafter as 
ALS, is a room-temperature ferroelectric. It melts at 
110°C before a Curie point is reached. It is the only 
soft ferroelectric known so far to exhibit an appreciably 
high value of spontaneous polarization, Ps, viz. 15 
microcoulomb.cm -2 (Jona & Shirane, 1962). The di- 
rection of Ps is in the mirror plane, approximately 
normal to (001) (Pepinsky & Vedam, 1959; Berlin- 
court, Cook & Rander, 1963). The mechanism of pol- 
arization reversal in ALS single crystals was studied by 
Fatuzzo (1959 and 1960). Berlincourt and his col- 
leagues, besides dielectric studies, reported inves- 
stigations on the piezo- and pyro-electric, as well as the 
elastic, properties of this crystal. Recently, a ferro- to 
para-electric transition at 72°C was induced in ALS 
by the application of a hydrostatic pressure of 12.5 
kbar, which indicated a hypothetical Curie point of 
147 °C (Samara & Anderson, 1966; Samara, 1968). ALS 
was also the first crystal with point group m to show 
rotatory power along its optic axes and for which a 
dextro-laevo conversion was obtained by the appli- 
cation of an electric field (Futama & Pepinsky, 1962). 

The crystal structure of ALS was first solved by X- 
ray diffraction by Vedam, Okaya & Pepinsky (1960), 
using isotropic thermal parameters for all the atoms. 
They, however, made no attempt to locate the lithium 
ion in the structure directly, but assigned to it a proba- 
ble position (0.65, 0.075, 0.23) from packing considera- 
tions. Later, a preliminary neutron diffraction study 
was made by Van den Hende & Boutin (1963) who 
reported the coordinates of the hydrogen atoms. The 
lithium ion, however, was not located, probably be- 
cause of insufficient data and also because of the small 
neutron scattering cross-section for the most abundant 
isotope of the lithium ion. From considerations of the 
angular dependence of 7Li (nuclear magnetic resonance 
study of the crystal), Gavrilova-Podolskaya (1966) con- 
cluded that the lithium ion occupies the position (½, x2, 
½). 

Experimental 

In the course of the X-ray analysis of some ferro- and 
piezo-electric crystals, the authors constructed a three- 
dimensional model of the structure of ALS and found 
that the positions assigned to the lithium ion by the 
earlier workers were not possible. The proposed posi- 
tions were too close to the heavy selenium atoms and 


